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Abstract In this paper we derive a compact mathematical formulation describing
the dynamics of chemical reaction networks that are complex-balanced and are gov-
erned by mass action kinetics. The formulation is based on the graph of (substrate
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crucially uses a balanced weighted Laplacian matrix. It is shown that this formulation
leads to elegant methods for characterizing the space of all equilibria for complex-
balanced networks and for deriving stability properties of such networks. We propose
a method for model reduction of complex-balanced networks, which is similar to the
Kron reduction method for electrical networks and involves the computation of Schur
complements of the balanced weighted Laplacian matrix.
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1 Introduction

One of the issues in formalizing the dynamics of chemical reaction networks is the
fact that their graph representation is not immediate; due to the fact that chemical
reactions usually involve more than one substrate chemical species and more than one
product chemical species. This problem is resolved by associating the complexes of the
reactions, i.e. the left-hand (substrate) and right-hand (product) sides of each reaction,
with the vertices of a graph, and the reactions with the edges.1 The resulting directed
graph, called the graph of complexes, is characterized by its incidence matrix B.
Furthermore the stoichiometric matrix S of the chemical reaction network, expressing
the basic balance laws of the reactions, can be factorized as S = Z B, with the complex-
stoichiometric matrix Z encoding the expressions of the complexes in the various
chemical species. We note that an alternative graph formulation of chemical reaction
networks is the species-reaction graph [2–4,7], which is a bipartite graph with one part
of the vertices corresponding to the species and the remaining part to the reactions,
and the edges expressing the involvement of the species in the reactions.

Using the graph of complexes formalism, we have developed in [23,28] a compact
mathematical formulation for a class of mass-action kinetics chemical reaction net-
works, which is characterized by the assumption of the existence of an equilibrium
for the reaction rates; a so-called thermodynamic equilibrium. This corresponds to the
thermodynamically justified assumption of microscopic reversibility, with the result-
ing conditions on the parameters of the mass action kinetics usually referred to as the
Wegscheider conditions. The resulting class of mass action kinetics reaction networks
are called (detailed)-balanced. A main feature of the formulation of [28] is the fact that
the dynamics of a detailed-balanced chemical reaction network is completely specified
by a symmetric weighted Laplacian matrix, defined by the graph of complexes and the
equilibrium constants, together with an energy function, which is subsequently used
for the stability analysis of the network. In particular, the resulting dynamics is shown
[23] to bear close similarity with consensus algorithms for symmetric multi-agent
systems. (In fact, it is shown in [28] that the so-called complex-affinities asymptoti-
cally reach consensus.) Furthermore, as shown in [17], the framework can be readily
extended from mass action kinetics to (reversible) Michaelis-Menten reaction rates.

On the other hand, the assumption of existence of a thermodynamical equilibrium
requires reversibility of all the reactions of the network, while there are quite a few
well-known irreversible chemical reaction network models, including the McKeithan
network to be explained shortly afterwards. Motivated by such examples we will extend
in this paper the results of [28] by considering the substantially larger class of complex-
balanced reaction networks. A chemical reaction network is called complex-balanced
if there exists a vector of species concentrations at which the combined rate of outgoing
reactions from any complex is equal to the combined rate of incoming reactions to
the complex, or in other words each of the complexes involved in the network is at
equilibrium. The notion of complex-balanced networks was first introduced in [16]

1 This approach is originating in the work of Horn and Jackson [16]; see also Othmer [21] and [2] for nice
exposés and additional insights.

123



J Math Chem (2013) 51:2401–2422 2403

Fig. 1 McKeithan’s network

and studied in detail in [8,9,11,15,24]. These systems have also been called toric
dynamical systems in the literature (see [8]).

An example of a complex-balanced network is the model of T-cell interactions due
to [19] (see also [25]) depicted in Fig. 1. This chemical reaction network model arises
in immunology and was proposed by McKeithan in order to explain the selectivity
of T-cell interactions. With reference to Fig. 1, T and M represent a T-cell receptor
and a peptide-major histocompatibility complex (MHC) respectively and T + M is
a complex for the network. For i = 1, . . . , N , Ci represent various intermediate
complexes in the phosphorylation and other intermediate modifications of the T-cell
receptor T ; kp,i represents the rate constant of the i th step of the phosphorylation
and k−1,i is the dissociation rate of the i th complex. In the following, we denote by
[A] the concentration of a species A participating in a chemical reaction network.
The governing law of the reaction network is the law of mass action kinetics. This
leads to the following set of differential equations describing the rate of change of
concentrations of various species involved in the network:

d[T ]
dt

= d[M]
dt

= −kp,0[T ][M] +
N∑

i=0

k−1,i [Ci ]

d[C0]
dt

= kp,0[T ][M] − (
k−1,0 + kp,1

) [C0]
...

d[Ci ]
dt

= kp,i [Ci−1] − (
k−1,i + kp,i+1

) [Ci ]
...

d[CN ]
dt

= kp,N [CN−1] − k−1,N [CN ] (1)

Observe that if the left hand side of each of the above equations is set to zero, all
the concentrations [Ci ] for i = 0, . . . , N − 1, can be parametrized in terms of [CN ].
Since all the rate constants and dissociation constants are positive, it is easy to see
that there exists a set of positive concentrations {[T ], [M], [C0], . . . , [CN ]} for which
the right hand sides of the Eq. (1) vanish. This implies that McKeithan’s network is
complex-balanced. On the other hand, all reactions in this network are irreversible,
and thus McKeithan’s network is not detailed-balanced.

The main aim of this paper is to show how the compact mathematical formula-
tion of detailed-balanced chemical reaction networks derived in [28] can be extended
to complex-balanced networks (such as McKeithan’s network). Indeed, the crucial
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difference between detailed-balanced and complex-balanced networks will turn out
to be that in the latter case the Laplacian matrix is not symmetric anymore, but still
balanced (in the sense of the terminology used in graph theory and multi-agent dynam-
ics). In particular, complex-balanced chemical networks will be shown to bear close
resemblance with asymmetric consensus dynamics with balanced Laplacian matrix.
Exploiting this formulation it will be shown how the dynamics of complex-balanced
networks share important common characteristics with those of detailed-balanced net-
works, including a similar characterization of the set of all equilibria and the same
stability result stating that the system converges to an equilibrium point uniquely deter-
mined by the initial condition. For the particular case when the complex-stoichiometric
matrix Z is injective as in the McKeithan’s network case, the same asymptotic sta-
bility results were obtained before in [25]. Furthermore, while for detailed-balanced
networks it has been shown in [28] that all equilibria are in fact thermodynamic equi-
libria in this paper the similar result will be proved that all equilibria of a complex-
balanced network are complex-equilibria. Similar results have already been proved in
[16]; however, the proofs presented in the current paper are much more concise and
insightful as compared to those presented in [16].

Furthermore, based on our formulation of complex-balanced networks exhibiting a
balanced weighted Laplacian matrix associated to the graph of complexes, we will pro-
pose a technique for model-reduction of complex-balanced networks. This technique
is similar to the Kron reduction method for model reduction of resistive electrical net-
works described in [18]; see also [10,27]. Our technique works by deleting complexes
from the graph of complexes associated with the network. In other words, our reduced
network has fewer complexes and usually fewer reactions as compared to the original
network, and yet the behavior of a number of significant metabolites in the reduced
network is approximately the same as in the original network. Thus our model reduc-
tion method is useful from a computational point of view, specially when we need to
deal with models of large-scale complex-balanced chemical reaction networks. Math-
ematically our approach is based on the result that the Schur complement (with respect
to the deleted complexes) of the balanced weighted Laplacian matrix of the full graph
of complexes is again a balanced weighted Laplacian matrix corresponding to the
reduced graph of complexes.

The paper is organized as follows. In Sect. 2, we introduce tools from graph theory
and stoichiometry of reactions that are required to derive our mathematical formu-
lation. In Sect. 3, we explain mass action kinetics, define complex-equilibria and
complex-balanced networks and then derive our formulation. In Sect. 4, we derive
equilibrium and stability properties of complex-balanced networks using our formula-
tion. In Sect. 5, we propose a model reduction method for complex-balanced networks,
while Sect. 6 presents conclusions based on our results.

Notation The space of n dimensional real vectors is denoted by R
n , and the space of

m ×n real matrices by R
m×n . The space of n dimensional real vectors consisting of all

strictly positive entries is denoted by R
n+ and the space of n dimensional real vectors

consisting of all nonnegative entries is denoted by R̄
n+. The rank of a real matrix A is

denoted by rank A. dim(V) denotes the dimension of a set V . Given a1, . . . , an ∈ R,
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diag(a1, . . . , an) denotes the diagonal matrix with diagonal entries a1, . . . , an ; this
notation is extended to the block-diagonal case when a1, . . . , an are real square matri-
ces. Furthermore, ker A and span A denote the kernel and span respectively of a real
matrix A. If U denotes a linear subspace of R

m , then U⊥ denotes its orthogonal
subspace (with respect to the standard Euclidian inner product). 1m denotes a vector
of dimension m with all entries equal to 1. The time-derivative dx

dt (t) of a vector x
depending on time t will be usually denoted by ẋ .

Define the mapping Ln : R
m+ → R

m, x �→ Ln(x), as the mapping whose i th
component is given as (Ln(x))i := ln(xi ). Similarly, define the mapping Exp : R

m →
R

m+, x �→ Exp(x), as the mapping whose i th component is given as (Exp(x))i :=
exp(xi ). Also, define for any vectors x, z ∈ R

m the vector x · z ∈ R
m as the element-

wise product (x · z)i := xi zi , i = 1, 2, . . . , m, and the vector x
z ∈ R

m as the element-

wise quotient
(

x
z

)

i
:= xi

zi
, i = 1, · · · , m. Note that with these notations Exp(x +z) =

Exp(x) · Exp(z) and Ln(x · z) = Ln(x) + Ln(z), Ln
(

x
z

)
= Ln(x) − Ln(z).

2 Chemical reaction network structure

In this section, we introduce the tools necessary in order to derive our mathematical
formulation of the dynamics of chemical reaction networks. We introduce the concept
of a complex graph, which was first introduced in the work of Feinberg [12], Horn
[15] and Horn and Jackson [16].

Assume that m, c and r denote the number of species (metabolites), complexes
and reactions respectively of a given chemical reaction network. The set of complexes
of a network is simply defined as the union of all the different left- and righthand
sides (substrates and products) of the reactions in the network. Thus, the complexes
corresponding to the network (Fig. 2) are X1 + 2X2, X3, 2X1 + X2 and X4.

The expression of the complexes in terms of the chemical species is formalized by
an m × c matrix Z , whose αth column captures the expression of the αth complex in
the m chemical species. For example, for the network depicted in Fig. 2,

Z =

⎡

⎢⎢⎣

1 0 2 0
2 0 1 0
0 1 0 0
0 0 0 1

⎤

⎥⎥⎦ .

We will call Z the complex stoichiometric matrix of the network. Note that by definition
all elements of the matrix Z are non-negative integers.

Since the complexes are the left- and righthand sides of the reactions, they can be
naturally associated with the vertices of a directed graph G with edges corresponding

Fig. 2 Example of a reaction
network
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to the reactions. Formally, the reaction α −→ β between the αth (reactant) and the
βth (product) complex defines a directed edge with tail vertex being the αth complex
and head vertex being the βth complex. The resulting graph will be called the graph
of complexes.

Recall, see e.g. [5], that any graph is defined by its incidence matrix B. This is a
c × r matrix, c being the number of vertices and r being the number of edges, with
(α, j)th element equal to −1 if vertex α is the tail vertex of edge j and 1 if vertex α

is the head vertex of edge j , while 0 otherwise.
The matrix S defined by S := Z B is called the stoichiometric matrix of the network.

The basic structure underlying the dynamics of the vector x ∈ R
m+ of concentrations

xi , i = 1, . . . , m, of the chemical species of a network is given by the balance laws

ẋ = Sv(x); (2)

the elements of the vector v ∈ R
r are commonly called the (reaction) rates or fluxes.

In this paper, we focus only on closed chemical reaction networks meaning those
without external fluxes. Therefore unless otherwise mentioned, our chemical reaction
networks do not have any external fluxes.

If there exists an m-dimensional row-vector k such that kS = 0, then the quantity
kx is a conserved quantity or a conserved moiety for the dynamics ẋ = Sv(x) for all
possible reaction rates v = v(x). Indeed, d

dt kx = kSv(x) = 0. Later on, in Remark
3.3, it will be shown that law of conservation of mass leads to a conserved moiety of
a chemical reaction network.

Note that for all possible fluxes the solutions of the differential equations ẋ = Sv(x)

starting from an initial state x0 will always remain within the affine space

Sx0 := {
x ∈ R

m+ | x − x0 ∈ im S
}
. (3)

Sx0 has been referred to as the positive stoichiometric compatibility class (correspond-
ing to x0) in [1,13,24].

3 The dynamics of complex-balanced networks governed by mass action
kinetics

In this section, we first recall the dynamics of species concentrations of reactions
governed by mass action kinetics. We then define complex-balanced networks and
derive a compact mathematical formulation for their dynamics.

3.1 The general form of mass action kinetics

Recall that for a chemical reaction network, the relation between the reaction rates
and species concentrations depends on the governing laws of the reactions involved in
the network. In this section, we explain this relation for reaction networks governed
by mass action kinetics. In other words, if v denotes the vector of reaction rates and x
denotes the species concentration vector, we show how to construct v(x). The reaction
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rate of the j th reaction of a mass action chemical reaction network, from a substrate
complex S j to a product complex P j , is given as

v j (x) = k j

m∏

i=1

x
ZiS j
i , (4)

where Ziρ is the (i, ρ)th element of the complex-stoichiometric matrix Z , and k j ≥ 0
is the rate constant of the j th reaction. Without loss of generality we will assume
throughout that for every j , the constant k j is positive.

This can be rewritten in the following way. Let ZS j denote the column of the
complex-stoichiometric matrix Z corresponding to the substrate complex of the j th
reaction. Using the mapping Ln : R

c+ → R
c as defined at the end of the Introduction,

the mass action reaction Eq. (4) for the j th reaction from substrate complex S j to
product complex P j can be rewritten as

v j (x) = k j exp
(

Z T
S j

Ln(x)
)
. (5)

Based on the formulation in (5), we can describe the complete reaction network
dynamics as follows. Let the mass action rate for the complete set of reactions be
given by the vector v(x) = [

v1(x) · · · vr (x)
]T . For every σ, π ∈ {1, . . . , c}, define

Cπσ := {
j ∈ {1, . . . , r} | (σ, π) = (S j ,P j )

}
and aπσ := ∑

j∈Cπσ
k j . Thus if there

is no reaction σ → π , then aπσ = 0. Define the weighted adjacency matrix A of the
graph of complexes as the matrix with (π, σ )th element aπσ , where π, σ ∈ {1, . . . , c}.
Furthermore, define L := � − A, where � is the diagonal matrix whose (ρ, ρ)th ele-
ment is equal to the sum of the elements of the ρth column of A. Let B denote the
incidence matrix of the graph of complexes associated with the network. By defini-
tion of L , we have 1T

c L = 0. It can be verified that the vector Bv(x) for the mass
action reaction rate vector v(x) is equal to −LExp

(
Z T Ln(x)

)
, where the mapping

Exp : R
c → R

c+ has been defined at the end of the Introduction. Hence the dynamics
can be compactly written as

ẋ = −Z LExp
(

Z T Ln(x)
)

(6)

A similar expression of the dynamics corresponding to mass action kinetics, in less
explicit form, was already obtained in [25].

3.2 Complex-balanced networks

We now define a class of reaction networks known as complex-balanced networks.
This class was first defined in the work of Horn and Jackson (see p. 92 of [16]). We
first define a complex-equilibrium of a reaction network.

Definition 3.1 Consider a chemical reaction network with dynamics given by the
Eq. (2). A vector of concentrations x∗ ∈ R

m+ is called a complex-equilibrium if
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Bv(x∗) = 0. Furthermore, a chemical reaction network is called complex-balanced
if it admits a complex-equilibrium.

It is easy to see that any complex-equilibrium is an equilibrium for the network, but
the other way round need not be true (since Z need not be injective). We now explain
the physical interpretation of a complex-equilibrium. Observe that

Bv(x∗) = 0 (7)

consists of c equations where c denotes the number of complexes. Among all the
reactions that the i th complex Ci is involved in, let Oi denote the set of all the reactions
for which Ci is the substrate complex and let Ii denote the set of all reactions for which
Ci is the product complex. The i th of Eq. (7) can now be written as

∑

k∈Ii

vk(x∗) =
∑

k∈Oi

vk(x∗)

It follows that at a complex-equilibrium, the combined rate of outgoing reactions from
any complex is equal to the combined rate of incoming reactions to the complex. In
other words, at a complex-equilibrium, every complex involved in the network is at
equilibrium.

In [15] and [9], conditions have been derived for a chemical reaction network
governed by mass action kinetics to be complex-balanced.

Remark 3.2 A thermodynamically balanced or detailed-balanced chemical reaction
network is one for which there exists a vector of positive species concentrations x∗ at
which each of the reactions of the network is at equilibrium, that is, v(x∗) = 0, see
e.g. [28]. Such networks are necessarily reversible. Clearly every thermodynamically
balanced network is complex-balanced.

We now rewrite the dynamical equations for complex-balanced networks governed
by mass action kinetics in terms of a known complex-equilibrium. It will be shown
that such a form of equations has advantages in deriving stability properties of and also
a model reduction method for complex-balanced networks. Recall Eq. (6) for general
mass action reaction networks. Assume that the network is complex-balanced with a
complex-equilibrium x∗. Define

K (x∗) := diagc
i=1

(
exp

(
Z T

i Ln(x∗)
))

where Zi denotes the i th column of Z . Equation (6) can be rewritten as

ẋ = −Z L K (x∗)K (x∗)−1Exp
(
Z T Ln(x)

) = −ZL(x∗)Exp
(

Z T Ln
( x

x∗
))

(8)

where L(x∗) := L K (x∗). Note that since 1T
c L = 0, also 1T

c L(x∗) = 0. Furthermore
since x∗ is a complex-equilibrium, we have

L(x∗)1c = L(x∗)Exp
(

Z T Ln
( x

x∗
))

|x=x∗
= 0
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Hereafter, we refer to L(x∗) as the weighted Laplacian of the graph of complexes
associated with the given complex-balanced network. Both the row and column sums
of the weighted Laplacian L(x∗) are equal to zero.2 It is this special property of the
weighted Laplacian that we make use of in deriving all the results stated further on in
this paper.

3.3 The linkage classes of a graph of complexes

A linkage class of a chemical reaction network is a maximal set of complexes
{C1, . . . , Ck} such thatCi is connected by reactions toC j for every i, j ∈ {1, . . . , k}, i �=
j . It can be easily verified that the number of linkage classes (�) of a network, which is
equal to the number of connected components of the graph of complexes correspond-
ing to the network, is given by � = c− rank(B) (the number of linkage classes in the
terminology of [12,13,16]). The graph of complexes is connected, i.e., there is one
linkage class in the network if and only if ker(BT ) = span

(
1c

)
.

Assume that the reaction network has � linkage classes. Assume that the i th linkage
class has ri reactions between ci complexes. Partition Z , B and L matrices according
to the various linkage classes present in the network as follows:

Z = [
Z1 Z2 . . . Z�

]

B =

⎡

⎢⎢⎢⎢⎢⎣

B1 0 0 . . . 0
0 B2 0 . . . 0
...

...
. . .

...
...

0 . . . 0 B�−1 0
0 . . . . . . 0 B�

⎤

⎥⎥⎥⎥⎥⎦

L(x∗) = diag(L1(x∗),L2(x∗), . . . ,L�−1(x∗),L�(x∗))

where for (i = 1, . . . , �), Zi ∈ R̄
m×ci+ , Bi ∈ R

ci ×ri and Li (x∗) ∈ R
ci ×ci denote the

complex-stoichiometric matrix, incidence matrix and the weighted Laplacian matrices
corresponding to equilibrium concentration x∗ respectively for the i th linkage class.
Let Si denote the stoichiometric matrix of the i th linkage class. It is easy to see that
Si = Zi Bi . Observe that Eq. (8) can be written as

ẋ = −
�∑

i=1

ZiLi (x∗)Exp
(

Z T
i Ln

( x

x∗
))

(9)

Remark 3.3 The law of conservation of mass states that there exists u ∈ R
m+, such that

Z T
i u ∈ span

(
1ci

)
for i = 1, . . . , �. This implies that uT x is a conserved moiety for the

dynamics ẋ = Z Bv, for all forms of the reaction rate v(x). Indeed, Z T
i u ∈ span

(
1ci

)

implies uT Z B = 0, since BT
i 1ci = 0.

2 In the literature on directed graphs (see e.g. [6]), L is called balanced. Note that the matrix L , having
zero column sums but not zero row sums, is similar to the ‘advection’ set-up considered in [6].
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4 Equilibria and stability of complex-balanced networks

In this section, we make use of the compact mathematical formulation (8) in order to
derive properties of equilibria and stability of complex-balanced networks.

4.1 Equilibria

Our first result is a characterization of the set of all positive equilibria3 of a complex-
balanced network in terms of a known equilibrium.

Theorem 4.1 Consider a complex-balanced network governed by mass action kinet-
ics. Let S ∈ R

m×r denote the stoichiometric matrix and assume that x∗ ∈ R
m+ is a

complex-equilibrium for the network. The following hold:

1. x∗∗ ∈ R
m+ is another equilibrium for the network iff ST Ln

(
x∗∗
x∗

)
= 0.

2. Every positive equilibrium of the network is a complex-equilibrium.

The proof of this theorem crucially makes use of the following lemma, which will
also be the basis for the proof of Theorem 4.7.

Lemma 4.2 Let L(x∗) be a balanced weighted Laplacian matrix as before. Then for
any γ ∈ R

c, γ T L(x∗)Exp(γ ) ≥ 0. Moreover γ T L(x∗)Exp(γ )=0 if and only if BT γ

= 0.

Proof Let γi denote the i th element of γ and let ki j denote the negative of the element
of L(x∗) corresponding to the j th row and i th column. Note that ki j ≥ 0, i, j =
1, · · · , c. Using 1T

c L(x∗) = 0 the expression −γ T L(x∗)Exp(γ ) can be rewritten as

[∑
i �=1(γi − γ1)k1i

∑
i �=2(γi − γ2)k2i . . .

∑
i �=c(γi − γc)kci

]

Exp(γ ) =
c∑

j=1

∑

i �= j

(γi − γ j )k ji exp(γ j )

Furthermore, since the exponential function is strictly convex

(β − α)exp(α) ≤ exp(α) − exp(β)

for all α, β, with equality if and only if α = β. Hence

− γ T L(x∗)Exp(γ ) =
c∑

j=1

∑

i �= j

(γi − γ j )k ji exp(γ j )

≤
c∑

j=1

∑

i �= j

k ji
(
exp(γi ) − exp(γ j )

)

3 Note that the network may have equilibria on the boundary of R
m+.
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= 1T
c

⎡

⎢⎣

∑
i �=1 k1i

(
exp(γi ) − exp(γ1)

)

...∑
i �=c kci

(
exp(γi ) − exp(γc)

)

⎤

⎥⎦

= −1T
c L(x∗)T Exp(γ ) = −(L(x∗)1c

)T Exp(γ ) = 0. (10)

since L(x∗) is balanced.
Furthermore, equality occurs in inequality (10) only when each of the terms within

the summation on the left hand side is equal to the corresponding term within the
summation on the right hand side. Since ki j > 0, i �= j, if the i th complex reacts
to the j th complex, it follows that γi = γ j for each such i, j , which is equivalent to
BT γ = 0. 
�
Proof (of Theorem 4.1) The dynamics of the complex-balanced network with c com-
plexes are given by

ẋ = −ZL(x∗)Exp
(

Z T Ln
( x

x∗
))

where Z ∈ R̄
m×c+ and L(x∗) ∈ R

c×c are as defined in the previous section. Let
B ∈ R

c×r denote the incidence matrix of the graph of complexes associated with the
network. Assume that the reaction network has � linkage classes. Assume that the i th
linkage class has ri reactions between ci complexes. Partition Z , B and L matrices
according to the various linkage classes present in the network as in Sect. 3.3. Define
Si := Zi Bi for i = 1, . . . , �.

(1) (Only If ): Assume that x∗∗ ∈ R
m+ is an equilibrium, that is

− ZL(x∗)Exp

(
Z T Ln

(
x∗∗

x∗

))
= 0 (11)

Define γ := Z T Ln
(

x∗∗
x∗

)
. Premultiplying Eq. (11) with Ln

(
x∗∗
x∗

)
, we get

−γ T L(x∗)Exp(γ ) = 0. Hence by Lemma 4.2, BT γ = 0 and thus ST Ln
(

x∗∗
x∗

)
=

0.
(If ) Assume that ST Ln

(
x∗∗
x∗

)
= 0. Hence for every linkage class i = 1, . . . , �,

ST
i Ln

(
x∗∗
x∗

)
= 0, or, equivalently, BT

i γ = 0. This implies that γi = γ j if the

i th complex reacts to the j th complex or vice-versa. This in turn implies that for

every linkage class i = 1, . . . , �, Z T
i Ln

(
x∗∗
x∗

)
consists of equal entries, or in other

words it can be written as

Z T
i Ln

(
x∗∗

x∗

)
= 
i1ci

where 
i ∈ R.
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Since x∗ is a complex-equilibrium, L(x∗)1c = 0. This implies that for i =
1, . . . , �, Li (x∗)1ci = 0. Now, by evaluating the RHS of (9) at x∗∗, we have

−
�∑

i=1

ZiLi (x∗)Exp

(
Z T

i Ln

(
x∗∗

x∗

))
= −

�∑

i=1

exp(
i )ZiLi (x∗)1ci = 0.

(2) Let x∗∗ ∈ R
m+ denote an equilibrium as in the proof of the earlier part. Then

ST Ln
(

x∗∗
x∗

)
= 0. We prove that x∗∗ is a complex-equilibrium. As shown earlier,

Z T
i Ln

(
x∗∗
x∗

)
= 
i1ci for i = 1, . . . , �. Since Li (x∗)1ci = 0, this implies that

(c.f., the discussion that preceeds (6) and the form in (9))

−Bv(x∗∗) = L(x∗)Exp

(
Z T Ln

(
x∗∗

x∗

))
=

⎡

⎢⎢⎢⎣

L1(x∗)Exp
(

Z T
1 Ln

(
x∗∗
x∗

))

...

L�(x∗)Exp
(

Z T
� Ln

(
x∗∗
x∗

))

⎤

⎥⎥⎥⎦ = 0

From the above equation, it follows that x∗∗ is a complex-equilibrium.


�
Remark 4.3 The steps followed in the proof of the above theorem are very similar
to the proof of the characterization of the space of equilibria of a class of networks
known as zero-deficiency networks presented in [13]. In the next subsection, we define
zero-deficiency networks and prove that every zero-deficiency network that admits an
equilibrium is complex-balanced. We emphasize here that the proof of Theorem 4.1
that is presented in this paper is much more simple as compared to similar proofs
provided in [13] due to the use of the properties of the weighted Laplacian in the
present manuscript.

One may wonder to what extent the balanced weighted Laplacian matrix L(x∗)
depends on the choice of the complex-equilibrium x∗. This dependency turns out to be
very minor, strengthening the importance of this matrix for the analysis of the network.
Indeed, consider any other complex-equilibrium x∗∗. Then ST Lnx∗∗ = ST Lnx∗, or
equivalently BT Z T Lnx∗∗ = BT Z T Lnx∗. Hence for the i th connected component
of the complex graph we have BT

i Z T
i Lnx∗∗ = BT

i Z T
i Lnx∗, or equivalently, since

ker BT
i = span1,

Z T
i Lnx∗∗ = Z T

i Lnx∗ + ci1 (12)

for some constant ci . Thus from the definition of L, it follows that Li (x∗∗) = diLi (x∗)
for some positive constant di . Hence, on every connected component of the graph of
complexes, the balanced weighted Laplacian matrix L(x∗) is unique up to multipli-
cation by a positive constant.
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4.2 Zero-deficiency networks

We now introduce the notion of zero-deficient chemical reaction networks mentioned
in Remark 4.3. This notion was introduced in the work of Feinberg [11] in order to
relate the stoichiometry of a given network to the structure of the associated graph of
complexes.

Definition 4.4 The deficiency δ of a chemical reaction network with complex-
stoichiometric matrix Z , incidence matrix B and stoichiometric matrix S is defined
as

δ := rank(B) − rank(Z B) = rank(B) − rank(S) ≥ 0 (13)

A reaction network has zero-deficiency if δ = 0.

Note that zero-deficiency is equivalent with ker(Z)∩ im(B) = 0, or with the mapping
Z : im B ⊂ R

c → R
m being injective.

Remark 4.5 The deficiency of a chemical reaction network has been defined in a
different way in [11]. Denote by � the number of linkage classes of a given chemical
reaction network. Note that � = c − rank(B) as explained in Sect. 3.3. In [11],
deficiency δ is defined as

δ := c − � − rank(S) (14)

It is easy to see that definitions (13) and (14) are equivalent.

We now prove that every zero-deficiency network that admits an equilibrium is
complex-balanced. Consequently all the results that we state for a complex-balanced
network also hold for a zero-deficiency network that admits an equilibrium.

Lemma 4.6 If a chemical reaction network is zero-deficient and admits an equilib-
rium, then it is complex-balanced.

Proof Consider a zero-deficient network with complex-stoichiometric matrix Z ∈
R̄

m×c+ and incidence matrix B ∈ R
c×r . Let x∗ ∈ R

m+ denote an equilibrium for
the given network. Then Sv(x∗) = Z Bv(x∗) = 0 and hence by zero-deficiency
Bv(x∗) = 0. Consequently x∗ is a complex-equilibrium and the network is complex-
balanced. 
�

The above lemma has been stated and proved earlier in [11, Theorem 4.1, p. 192]
in a different and more lengthy manner. For McKeithan’s network it is easily seen that
Z itself is already injective, thus implying zero-deficiency.

4.3 Asymptotic stability

The next theorem gives a Lyapunov function for (8).
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Theorem 4.7 Consider a complex-balanced network with stoichiometric matrix S ∈
R

m×r , an equilibrium x∗ ∈ R
m+ and dynamics given by Eq. (8). Define4

G(x) = xT Ln
( x

x∗
)

+ (x∗ − x)T1m (15)

Then G has a strict minimum at x∗ and for x ∈ R
m+,

Ġ(x) ≤ 0, Ġ(x) = 0 if and only if x ∈ E,

where

E :=
{

x∗∗ ∈ R
m+ | ST Ln(x∗∗) = ST Ln(x∗)

}
. (16)

Proof Observe that G(x∗) = 0. We prove that

G(x) > 0 ∀x �= x∗, (17)

Let xi and x∗
i denote the i th elements of x and x∗ respectively. From the strict concavity

of the logarithmic function,

z − ln(z) ≥ 1 (18)

∀z ∈ R+ with equality occuring only when z = 1. Putting z = x∗
i

xi
in Eq. (18), we get

x∗
i − xi + xi ln

(
xi

x∗
i

)
≥ 0

This implies that

G(x) =
m∑

i=1

[
x∗

i − xi + xi ln

(
xi

x∗
i

)]
≥ 0.

with equality occuring only when x = x∗, thus proving (17). We now prove that

Ġ(x) := ∂G

∂x
(x)ẋ ≤ 0 ∀x ∈ R

m+, (19)

and Ġ(x) = 0 if and only if x ∈ E . Observe that

Ġ(x) = −Ln
( x

x∗
)T

Z T L(x∗)Exp
(

Z T Ln
( x

x∗
))

4 G defined by (15) is closed to the Gibbs’ free energy (see [28]) and is a standard Lyapunov function used
in chemical reaction network theory (see for example [13]).
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Defining γ := Z T Ln
( x

x∗
)

we thus obtain Ġ(x) = −γ T L(x∗)Exp(γ ) and the state-
ment follows from Lemma 4.2. 
�

Remark 4.8 The crux of the proofs of Theorems 4.1 and 4.7 is the inequality
γ T L(x∗)Exp(γ ) ≥ 0, for all γ ∈ R. This inequality holds because of balanced-
ness of L and we make use of the convexity of the exponential function in order to
prove it.

With reference to Theorem 4.7, since the Lyapunov function G is proper (in R̄
m+), (19)

implies that the state trajectory x(·) is bounded in R
m+. We now show that correspond-

ing to every positive stoichiometric compatibility class (see Eq. (3) for a definition)
of a complex-balanced chemical reaction network, there exists a unique complex-
equilibrium in E defined by Eq. (16). The proof that we provide for this result is very
similar to the proof of the zero-deficiency theorem provided in [13] and is based on the
following proposition therein. Recall from the Introduction that the product x · z ∈ R

m

is defined element-wise.

Proposition 4.9 Let U be a linear subspace of R
m, and let x∗, x0 ∈ R

m+. Then there
is a unique element μ ∈ U⊥, such that

(
x∗ · Exp(μ) − x0

) ∈ U.

Proof See proof of [13, Proposition B.1, pp. 361–363]. 
�

Although it can be shown, using the same arguments as in [25], that the positive orthant
R

m+ is forward invariant for (8), Theorem 4.7 does not directly prevent the solution
trajectories of (8) to approach the boundary equilibria of (8) for t → ∞. The reaction
network is called persistent5 if for every x0 ∈ R

m+ the ω-limit set ω(x0) does not
intersect the boundary of R̄

m+.

Theorem 4.10 Consider the complex-balanced chemical reaction network with
dynamics given by Eq. (8) and equilibrium set E given by Eq. (16). Then for every
x0 ∈ R

m+ there exists a unique x1 ∈ E ∩ Sx0 with Sx0 given by (3). The equilibrium x1
is (locally) asymptotically stable with respect to all initial conditions in S(x0) nearby
x1. Furthermore, if the network is persistent then x1 is globally asymptotically stable
with respect to all initial conditions in S(x0).

Proof With reference to Proposition 4.9, define U = im S, and observe that U⊥ =
ker ST . By Proposition 4.9, there exists a unique μ ∈ ker ST such that x∗ · Exp(μ) −
x0 ∈ im S. Define x1 := x∗ · Exp(μ) ∈ R

m+. It follows that ST μ = ST Ln
( x1

x∗
) = 0,

i.e., x1 ∈ E . Also, since x1 − x0 ∈ im S, x1 ∈ Sx0 which is an invariant set of the
dynamics. Together with Theorem 4.7 it follows that the equilibrium x1 ∈ E is locally
asymptotically stable with respect to nearby initial conditions in S(x0), and globally
asymptotically stable with respect to all initial conditions in S(x0) if the network is
persistent. 
�

5 It is generally believed that most reaction networks are persistent. However, up to now this persistence
conjecture has been only partially proved (cf. [1,4,24] and the references quoted in there).
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5 Model reduction

For chemical reaction networks, model-order reduction is still underdeveloped. The
singular perturbation method and quasi steady-state approximation (QSSA) approach
are the most commonly used techniques, where the reduced state contains a part of the
species of the full model. In the thesis by Härdin [14], the QSSA approach is extended
by considering higher-order approximation in the computation of quasi steady-state.
Sunnåker et al. in [26] proposed a reduction method by identifying variables that can
be lumped together and can be used to infer back the original state. In Prescott and
Papachristodoulou [22], a method to compute the upper-bound of the error is proposed
based on sum-of-squares programming.

In this section, we propose a novel and simple method for model reduction of
complex-balanced chemical reaction networks governed by mass action kinetics. Our
method is based on the Kron reduction method for model reduction of resistive elec-
trical networks described in [18]; see also [27]. Moreover, the resulting reduced-order
model retains the structure of the kinetics and gives result to a reduced complex bal-
anced network, which enables a direct chemical interpretation.

5.1 Description of the method

Consider a complex-balanced reaction network described in the standard form (8)

� : ẋ = −ZL(x∗)Exp
(

Z T Ln
( x

x∗
))

(20)

Our model reduction method is based on reduction of the graph of complexes associated
with the network. Let V denote the set of vertices of the graph of complexes. Reduction
of � will be performed by deleting certain complexes in the graph of complexes,
resulting in a reduced graph of complexes. Consider a subset Vr ⊂ V of dimension ĉ
that we wish to delete in order to reduce the model. Without loss of generality, assume
that the last c− ĉ rows and columns of L(x∗) correspond to the vertex set Vr . Consider
a partition of L(x∗) given by

L(x∗) =
[L11(x∗) L12(x∗)
L21(x∗) L22(x∗)

]
(21)

where L11(x∗) ∈ R
ĉ×ĉ, L12(x∗) ∈ R

ĉ×(c−ĉ), L21(x∗) ∈ R
(c−ĉ)×ĉ and L22(x∗) ∈

R
(c−ĉ)×(c−ĉ). Consider a corresponding partition of Z given by Z = [

Z1 Z2
]
, in

order to write out the dynamics of � as

ẋ = − [
Z1 Z2

] [L11(x∗) L12(x∗)
L21(x∗) L22(x∗)

] [
Exp

(
Z T

1 Ln
( x

x∗
))

Exp
(
Z T

2 Ln
( x

x∗
))

]
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Let L̂(x∗) denote the Schur complement of L(x∗) with respect to the indices corre-
sponding to Vr . Consider now the auxiliary dynamical system

[
ẏ1
ẏ2

]
= −

[L11(x∗) L12(x∗)
L21(x∗) L22(x∗)

] [
w1
w2

]

where we impose the constraint ẏ2 = 0. It follows that

w2 = −L22(x∗)−1L21(x∗)w1,

leading to the reduced auxiliary dynamics defined by the Schur complement

ẏ1 = −(L11(x∗) − L12(x∗)L22(x∗)−1L21(x∗)
)
w1 = −L̂(x∗)w1

Putting back in w1 = Exp
(
Z T

1 Ln
( x

x∗
))

, making use of ẋ = Z1 ẏ1 + Z2 ẏ2 = Z1 ẏ1,

we then obtain the reduced network �̂ given by

�̂ : ẋ = −Ẑ L̂(x∗)Exp
(

Ẑ T Ln
( x

x∗
))

. (22)

where Ẑ := Z1. We now show that L̂(x∗) obeys all the properties of the weighted
Laplacian matrix of a complex-balanced reaction network corresponding to a graph
of complexes with vertex set V − Vr .

Proposition 5.1 Consider a complex-balanced network � with dynamics given by
Eq. (20). With V , Vr and L̂ as defined above, the following properties hold:

1. All diagonal elements of L̂(x∗) are positive and off-diagonal elements are non-
negative.

2. 1T
ĉ L̂(x∗) = 0 and L̂(x∗)1ĉ = 0, where ĉ := c − dim(Vr ).

Proof (1) Follows from the proof of [20, Theorem 3.11]; see also [27] for the case of
symmetric L.

(2) Without loss of generality, assume that the last c − ĉ rows and columns of L(x∗)
correspond to the vertex set Vr . Consider a partition of L(x∗) given by (21). By
definition,

L̂(x∗) = L11(x∗) − L12(x∗)L22(x∗)−1L21(x∗)

Since 1T
c L(x∗) = 0, we obtain

1T
ĉ L11(x∗) + 1T

c−ĉL21(x∗) = 0; 1T
ĉ L12(x∗) + 1T

c−ĉL22(x∗) = 0

Using the above equations, we get

1T
ĉ L̂(x∗) = 1T

ĉ

(L11(x∗) − L12(x∗)L22(x∗)−1L21(x∗)
) = −1T

c−ĉL21(x∗)
+1T

c−ĉL22(x∗)L22(x∗)−1L21(x∗) = 0
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In a similar way, it can be proved that L̂(x∗)1ĉ = 0. 
�
We derive the following properties relating � and �̂.

Proposition 5.2 Consider the complex-balanced reaction network � and its reduced
order model �̂ given by (22). Denote their sets of equilibria by E , respectively Ê . Then
E ⊆ Ê .

Proof Let B denote the incidence matrix for � and let c and ĉ denote the number of
complexes in � and �̂ respectively. Assume that the graph of complexes is connected;
otherwise the same argument can be repeated for every component (linkage class). It
follows that ker(BT ) = span(1c). Let x∗∗ ∈ E . We show that x∗∗ ∈ Ê . Let Z and
Ẑ denote the complex-stoichiometric matrices of � and �̂ respectively. Let L(x∗)
denote the weighted Laplacian of the graph of complexes of � corresponding to an
equilibrium x∗. Let L̂(x∗) denote the Schur complement of L(x∗) corresponding to
the reduced model �̂.

Since x∗∗ ∈ E , BT Z T Ln
(

x∗∗
x∗

)
= 0. It follows that Z T Ln

(
x∗∗
x∗

)
∈ span(1c).

This implies that Ẑ T Ln
(

x∗∗
x∗

)
∈ span(1ĉ) since the columns of Ẑ form a subset of the

columns of Z . From Proposition 5.1, it now follows that L̂(x∗)Exp
(
Ẑ T Ln

(
x∗∗
x∗

))
=0.

Consequently x∗∗ ∈ Ê . This concludes the proof. 
�
This proves that �̂ is again a complex-balanced chemical reaction network governed

by mass action kinetics, with a reduced number of complexes and with, in general, a
different set of reactions (edges of the complex graph). An appropriate choice of Vr

will ensure that some of the elements of x have derivative zero in �̂ leading to lesser
number of state variables in �̂ as compared to �.

We now give a chemical interpretation of our reduction scheme. When a complex
balanced chemical reaction network is perturbed from an equilibrium, it has certain
species reaching their equilibrium much faster than the remaining ones. The principle
behind our model reduction method is to impose the condition that complexes entirely
made up of such species remain at constant concentrations.

5.2 Effect of model reduction

In this section, we show the effect of our model reduction method on two types of
complex-balanced networks with a single linkage class. In other words, we give an
interpretation of our reduced model in terms of its corresponding full model for two
types of networks. Note that deletion of a set of complexes in one linkage class does
not affect the reactions of the other linkage classes of the network.

Type 1:

Full Network: C1
k1�

k−1
C2

k2�
k−2

C3
k3�

k−3
· · · kn−1�

k−(n−1)

Cn (23)

Reduced Network: C1

k1k2
k−1+k2�
k−1k−2
k−1+k2

C3
k3�

k−3
· · · kn−1�

k−(n−1)

Cn (24)
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These are complex-balanced networks with reversible reactions occuring between
consecutive elements of the set of distinct complexes {C1, C2, . . . , Cn} as in (23). The
reduced network obtained by deleting the complex C2 can be computed to be (24). The
two reactions, C1 � C2 and C2 � C3 in the full network are replaced by one reaction
C1 � C3 in the reduced network. This reaction is again a reversible reaction governed
by mass action kinetics, with rate constants given by (24).

The transient behaviour of the metabolites involved in the complexes of the reduced
model will approximately be the same as that of the full model if the metabolites
involved in C2 reach their steady states much faster than the remaining metabolites.
In this case, we can safely impose the condition that the metabolites involved in C2
are at constant concentration in order to obtain the reduced model (24) with similar
transient behaviour as that of (23). The rule of induction may be applied in order to
further reduce the model by deleting more complexes.

A special case of Type 1 networks is C1 � C2. Deletion of the complex C2 in this
case is equivalent to deletion of the linkage class from the network. Such a deletion
provides a close approximation to the original network if the reaction has very little
effect on the dynamics of the network, i.e., if the reaction reaches its steady state much
faster than the remaining reactions of the network.

Type 2: These are complex-balanced networks between distinct complexes
{C1, C2, . . . , Cn} as shown in Fig. 3. McKeithan’s network is an example of such
networks. The reduced network obtained by deleting complex C2 is shown in Fig. 4.
Observe that the reaction C1 → C0 in the reduced network has a different rate constant
as compared to the full network. The three reactions C1 → C2, C2 → C3 and C2 → C0
of the full network are replaced by one reaction C1 → C3 in the reduced network. The
rate constant for this reaction is given in Fig. 4. All the remaining reactions of the
reduced network occur in the same way as in the full network.

In this case, the transient behaviour of the metabolites involved in the complexes
of the reduced model will approximately be the same as that of the full model if the
metabolites involved in C2 reach their steady states much faster than the remaining
metabolites. Using the method described in this paper, we can study the effects of
deleting other complexes like C1 or Cn from the model.

Observe that for all the types of networks discussed above, it is important to deter-
mine which of the complexes are to be deleted so that the reduced model approximates
the full model reasonably well.

Fig. 3 Type 2 full network

Fig. 4 Type 2 reduced network
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Fig. 5 Concentration profiles of T and M

Example 5.3 We have applied the model reduction method described in this paper
to the model of T-cell interactions as in (1). We use the following numerical values:
N = 19;

kp,0 = 52; kp,1 = 49; kp,2 = 41; kp,3 = 39; kp,4 = 37;
kp,5 = 34; kp,6 = 31; kp,7 = 29; kp,8 = 25; kp,9 = 19;
kp,10 = 16; kp,11 = 21; kp,12 = 20; kp,13 = 19; kp,14 = 18;
kp,15 = 15; kp,16 = 24; kp,17 = 13; kp,18 = 7; kp,19 = 5;
k−1,0 = 13; k−1,1 = 29; k−1,2 = 0.16; k−1,3 = 1.4; k−1,4 = 2.3;
k−1,5 = 2; k−1,6 = 0.19; k−1,7 = 0.33; k−1,8 = 0.94; k−1,9 = 0.67;
k−1,10 = 0.31; k−1,11 = 0.21; k−1,12 = 3; k−1,13 = 5; k−1,14 = 1;
k−1,15 = 11; k−1,16 = 0.8; k−1,17 = 7; k−1,18 = 1; k−1,19 = 17.

The initial value of each of the complexes Ci , i = 0, . . . , 19 is assumed to be
equal to 0.01. The complexes T and M are assumed to have initial concentrations
1 and 2 respectively. We have performed model reduction by deleting 5 complexes
C15, C16, C17, C18 and C19. We have simulated the transient behaviour of the remain-
ing complexes for the first two time units. The simulation results show that there is a
good agreement between the transient behaviour of the concentration of most of such
complexes when comparing the full network to the reduced network. Fig. 5 depicts
plots of comparison of the concentration profiles of T and M .

An interpretation of model reduction of the above example model is as follows. By
deleting complexes C15, C16, C17, C18 and C19, we assume that these complexes are at
constant concentration. Since deleting these complexes results in a reduced model that
closely mimics the original model, it follows that in the full model, these complexes
reach an equilibrium much faster than the remaining complexes, so that assuming that
these complexes are at constant concentrations results in a close approximation of the
original model.
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6 Conclusion

In this paper, we have provided a compact mathematical formulation for the dynamics
of complex-balanced networks. We have made use of this formulation for the determi-
nation of equilibria and the asymptotic stability of such networks. The methods that
have been employed are very similar to the ones used in [13], but the difference is that
our proofs are much more concise than the ones presented in [13] due to the use of
properties of balanced weighted Laplacian matrices of complex-balanced networks.
Furthermore, we have made use of the formulation in order to derive a model reduction
technique for complex-balanced networks.

A main challenge for further research is the extension of our results to chemical
reaction networks with external fluxes and/or externally controlled concentrations.
This will change the stability analysis considerably, due to the nonlinearity of the
differential equations. Furthermore, it will also lead to scrutinizing the model reduction
technique proposed in this paper from an external (input-output) point of view.
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